Tag Archives: university

Using social media to engage students – a list

I am running a workshop today on using social media to engage students, particularly mathematical sciences undergraduates. I think this is an emerging area about which little is known. I’ve tried to think of some examples of what you might do with these technologies. What do you think of my list? I’d be pleased to hear suggestions for additions, or stories about when you’ve tried this and how it went, in the comments.

How we assess mathematics students: a workshop at BMC

If you are attending the British Mathematical Colloquium next week look out for a workshop on ‘How we assess mathematics students: a survey and case studies’. This is being run by our assessment project ‘MU-MAP – Mapping University Mathematics Assessment Practices‘.

This project was funded as a result of the HE Mathematics Curriculum Summit, which was concerned that mathematics at HE could benefit from a wider range of assessment methods but that the research wasn’t available to the community to inform assessment decisions. The project is completing a literature survey of assessment practices, developing case studies and studying the costs and effects of change in assessment methods.

The workshop details are available on the BMC 2012 website. The abstract is below:

This workshop will present findings from the MU MAP Project: Mapping University Mathematics Assessment Practices.
MU MAP (supported by the MSOR Network through the Mathematical Sciences HE Curriculum Innovation Project) surveyed assessment practices across university mathematics in the UK and developed resources in the form of case studies of assessment of mathematics at undergraduate level. In the workshop we will present results from a survey of assessment methods in UG mathematics, and invite mathematics lecturers who took part in the project to present their case studies of assessment. We will also discuss the costs and effects of the change in assessment practice in the light of the case studies presented.

Booklet: Good Practice on Inclusive Curricula in the Mathematical Sciences

We supported Emma Cliffe (Bath) to run a workshop and co-ordinate a booklet to investigate and share good practice relating to inclusive curricula in mathematical sciences. The workshop, the Maths, Stats and OR Accessibility Workshop, took place at the University of Bath on 21st February 2011. I am delighted to report that the booklet is now available as: Good Practice on Inclusive Curricula in the Mathematical Sciences.

Good Practice on Inclusive Curricula in the Mathematical Sciences

Interim report: “Development and evaluation of methods aimed at individual lecturers for producing flexible and accessible learning resources to enable inclusive curriculum delivery in mathematics”

The following interim report has been submitted by Emma Cliffe and Jane White for their project looking at methods to produce flexible and accessible learning resources in mathematics.

Progress:

A literature and technology review, coupled with survey responses and some student feedback has been used to define the requirements for the methods to produce accessible mathematical learning resources.

The review of the literature provided confirmation of the formats which departments may need to provide to disabled students and some guidance as to current methods specific to producing mathematical documents. Basic test use of individual identified methods ensured we had an understanding of the current base capabilities of a variety of technologies.

A survey was produced and staff from three institutions were invited to respond. This survey aimed to capture current practise in the production of mathematical learning resources by individual staff. Respondents were additionally asked if they were willing to provide representative samples of their learning resources in the underlying production formats. The survey had 45 respondents from three departments and 16 members of staff agreed to provide representative samples. Of these, 4 staff offered resources for research purposes only and 12 staff agreed that in addition we may report anonymised quantitative data and anonymised partial or full quotations from the files provided. This collection of samples was outside the original planned work but we felt analysis of ‘live’ samples would provide a strong basis for our recommendations as well as forming rich case studies for possible inclusion in the output resources.

A request for input from disabled students in mathematics currently receiving notes prior to lectures received only one response. We were able to mitigate this by referring back to feedback on notes already in production at Bath and we intend to contact students again once we have example resources for them to trial.

Current activities:

The collected case study samples have provided a body of test inputs to the technologies we identified in the literature and technology review stage. Analysis of the provided files, the interaction of these with the identified technologies and of the technologies with each other when working with these examples is ongoing. This analysis is being used to formulate and adjust the recommended methods for producing masters which can be automatically transformed. We will also be able to report on our experiences of working with legacy documents and to refer to case studies in the outputs.

Dissemination activities:

We gave a short report on our work to date at the University of Bath HE STEM Seminar on Monday 30th January 2012.

Future activities:

The collection and analysis of representative samples was not part of the original plan of work. However, the collection allows methods to have a sound footing prior to use by a small number of staff to produce notes for current students and enables us to report on case study documents. The trial and iterative evolution of methods, which was to take place in January will now take place later in the project, be of a more limited nature and start from a stronger base.

The main member of staff working on the project was away for a period during February. In order to ensure that the project reports in May as planned additional hours of work have been assigned to the project throughout March, April and May. The creation of instructions and examples will take now take place alongside the small trial and adjustments to the methods. This will allow the instructions to evolve in a natural way as the staff and students report back on their experiences. Analysis of costs, barriers and risks, the final report and presentation of the project outcomes will take place in May as originally planned.

Invitation: Mathematics Group Work and Asperger Syndrome

The following announcement about a meeting of our working group on ‘Group work’ on 13th March in Bath is being circulated. Please pass this message along to colleagues who may be interested.

Subject: Invitation to working group meeting, 13th March: Mathematics Group Work and Asperger Syndrome

Dear All,

This project is looking at the advantages and disadvantages of group
work used in Mathematics degree programmes especially in relation to
students with Asperger’s Syndrome.

Our aim is to build a community of academics that use group work for
assessment and developing graduates’ skills. We realise that students
with Asperger’s Syndrome may have difficulties participating in group
work thus hindering them from accessing the benefits particularly in
terms of graduate / employability skills development.

Our first meeting will be held at the University of Bath on Tuesday 13th
March from 11am – 3.30pm approx. There will an opportunity for all
involved to share their thoughts and current practices. Speakers will
include Barrie Cooper (University of Exeter) on group work in
mathematics and Daniel Aherne (National Autistic Society).

Please contact Noel-Ann Bradshaw (n.bradshaw@gre.ac.uk) and Emma Cliffe
(E.H.Cliffe@bath.ac.uk) if you would like to attend the meeting at Bath
on 13th March, are interested in attending a subsequent meeting at
Birmingham or contributing to this work in any other way.

Please pass this message along to colleagues who may be interested.

Kind regards,

Emma Cliffe and Noel-Ann Bradshaw

Course availability

The University and College Union (UCU) have issued a report Course cuts: How choice has declined in higher education. The UCU press release give the headline figure as:

The number of full-time undergraduate courses on offer at UK universities has fallen by more than a quarter (27%) since 2006… Despite an increase in student numbers.

The press release gives as a key finding that “Single subject STEM courses down 15% and arts and humanities down 14%”.  (Given that, it is a little strange to see Times Higher Education putting the emphasis solely on arts and humanities courses.)

The focus from UCU is on choice, with general secretary Sally Hunt quoted saying:

This report shows that, while government rhetoric is all about students as consumers, the curriculum has actually narrowed significantly.
If we want to compete globally, we simply cannot have areas of the country where students do not have access to a broad range of courses.

This focus on geographical differences puts me in mind of the Steele report, “Keeping HE Maths where it Counts” (2007), which took an interest in the regional availability of courses with a broad range of entry requirements and had a finding about “mathematical deserts”, areas where students tended to stay local for university where mathematics is not available as an option.

Key findings aside, I was struck by the per subject data for course availability. I am not as aware of cross-subject comparisons as I should be. I am used to hearing a complaint that the professional and learned bodies in mathematics (IMA & LMS) only have about 7 thousand members, compared to forty or fifty thousand each for IOP and RSC, despite mathematics graduating nearly as many students per year as physics and chemistry combined (and what this says about how mathematics undergraduates view themselves as part of a wider mathematical community). This gives me the idea that mathematics is a widely available subject compared to others. This, it seems, may be a fallacy.

The table below is a reduced version of this table, which I compiled from data given in the Course cuts report. The totals refer to degree course provision in the UK. I have taken the liberty of combining a few lines from the original report. There were some subdivided disciplines with relatively few courses. I may, in my ignorance, be committing a sin as terrible as combining biology and computer science as the same, but I have combined three courses on history, two on law, three modern languages and two classics into single lines. These combinations are indicated in the table. I hope these are reasonable.

Subject 2012 total decline since 2006 decline as percentage of 2006 total Proportion of G100 Mathematics
I100 Computer Science 169 38 18.36% 2.49
N100 Business studies 151 11 6.79% 2.22
Q300 English studies 116 -4 -3.57% 1.71
Law: M100 Law by area & M200 Law by topic 145 6 3.97% 2.13
History: V100 History by period, V200 History by area & V300 History by topic 143 17 10.63% 2.1
L300 Sociology 92 14 13.21% 1.35
C100 Biology 88 11 11.11% 1.29
L200 Politics 79 2 2.47% 1.16
H200 Civil engineering 73 -2 -2.82% 1.07
L100 Economics 71 9 11.25% 1.04
G100 Mathematics 68 7 9.33% 1
F800 Physical geographical sciences 65 21 24.42% 0.96
F100 Chemistry 59 3 4.84% 0.87
L700 Human & social geography 50 13 20.63% 0.74
F300 Physics 47 -3 -6.82% 0.69
V500 Philosophy 45 3 6.25% 0.66
Modern languages: R100 French studies, R200 German studies & T100 Chinese studies 77 15 16.30% 1.13
Classics: Q600 Latin studies & Q700 Classical Greek studies 16 1 5.88% 0.24

In case you are interested, the numbers for the subjects the report claims the decline is most particularly in are:

For STEM: biology (down 11 to 88 courses, an 11% reduction of 2006 numbers), physical geographical sciences (down 21 to 65, a 24% reduction) and computer science (down 38 to 169, an 18% reduction);
For social sciences: human and social geography (down 13 to 50, a 21% reduction) and sociology (down 14 to 92, a 13% reduction);
For arts and humanities: French studies (down 10 to 26, a 21% reduction), German studies (down 6 to 21, a 17% reduction) and history by topic (down 13 to 34, a 27% reduction).

What I am most struck by is the number of courses still available for some subjects. Having thought mathematics was relatively available, based on a comparison with physics and chemistry,of the subjects included in the report I see only physical geographical sciences, chemistry, human and social geography, physics, philosophy and classics are less available. (I wondered about combining physical and human & social geography, which would take geography above mathematics, but decided against it because the report classified one as STEM and the other as Social sciences.)

There are more degree courses available to study in each of computer science, business, law, history, English, sociology, biology, politics, modern languages, civil engineering and economics than in mathematics.

Perhaps this isn’t unreasonable. Of course, there is always going to be variation and the availability will be demand-led, but when I see that an applicant wanting to study computer science, business, law or history has more than twice as many options as those wishing to study mathematics, and that mathematics is the twelfth most available subject out of eighteen in both 2012 and 2006, I can’t help feeling a little sad for my discipline. (Of course, the picture is even worse for other subjects; those I have listed as twice as available as mathematics have more than three times the number of physics courses available.)

Interim report: ‘MU-MAP: Mapping University Mathematics Assessment Practices’

Paola Iannone, University of East Anglia, and Adrian Simpson, Durham University, have submitted the following interim report for their project ‘MU-MAP: Mapping University Mathematics Assessment Practices‘.

Start date: 9th November 2011 – initial preparation between 01.10.11.and 09.11.11

Initial preparation:

The RA to the MU MAP Project was appointed in August 2011 and started work at UEA on the 9th of November 2011. Some initial preparation for the project was carried out by the PI and Co-Applicant before the project started. These include:

  1. Creation of a one-page website for the project at http://uea.ac.uk/edu/mumap. This website will be populated as the projects progresses. A team of web developer familiar with the UEA web design package has been commissioned to develop this website. This will house the materials and outcomes of the MU MAP project and will be maintained by UEA for the next 5 years.
  2. A dissemination workshop (two 2-hours sessions) at the forthcoming British Mathematical Colloquium (BMC -16-19 April 2012, University of Kent) has been organised with the conference organisers. The title of the workshop is “How we assess mathematics students: a survey and case studies. Findings from the MU MAP Project”

First MU MAP Meeting – Loughborough University – 17.11.11

The First MU MAP meeting with mathematics lecturers was held on the 17.11.11 at Loughborough University. During this meeting we presented preliminary findings from the survey of assessment practices and we launched the call for Mini Projects, part of Phase 4 of MU MAP.

Phase 1: Comprehensive Review of the Literature

The review of the literature (as detailed in Phase 1 of MU MAP) is well under way. We have collected papers relevant to

  1. Existing empirical research in university assessment practices, particularly focussed on STEM.
  2. Existing empirical research in mathematics university assessment practice.
  3. Existing pedagogical scholarship in mathematics university assessment practice.

Currently we are writing summaries of the papers included in the literature review. These summaries will form part of the searchable database on the MU MAP website. A summary of findings from this literature review will form the first part of the MU MAP Good Practice Book and will be posted on the MU MAP website.

Phase 2: Surveying Existing Practice

The web-based survey (as detailed in Phase 2 of MU MAP) has been completed and the results are collected in our database. The interviews with the Head of Schools of mathematics departments are under way – so far we have interviewed 27 Head of Schools.

Phase 3: Identification of Good Practice

As part of the interviews with the Head of Schools we have asked them to nominate staff in their department who assess their modules with innovative, interesting assessment practices (as detailed in Phase 3 of MU MAP). We have interviewed 17 lecturers about their assessment practices. These will constitute the anonymised short case studies of good assessment practice which will be posted on the website and will be included in the MU MAP Good Practice book.

Phase 4: Costs and Effects of Change

(As detailed in Phase 4 of MU MAP) After the call of mini projects at the Loughborough meeting we received 8 applications. We were able to fund 7 mini projects. The list of the mini-projects funded with lead applicants, institutions and brief summary of the projects is included below. The successful applicants have been notified and work is underway to start the mini-projects. Project leaders will disseminate their findings at the forthcoming BMC, as described above.

Mini projects funded by MU MAP

Audience Response devices for formative and summative assessment
Paul Hewson and David Graham
School of Computing and Mathematics, Plymouth University

Audience response devices have received tremendous attention in the learning community. Kay and Sage (2009) “Examining the benefits and challenges of using audience response systems: A review of the literature” Computers & Education 53:819-827 present a review of these devices in class use. There are many advantages, and one notable potential pitfall – that students may not appreciate being constantly assessed. However, our experience is that students do like constant assessment if it is accompanied by rapid feedback. Also, surprisingly, we have had students suggest they would prefer to take in-class tests (that is, summative assessment) using these devices. The aim of this project is to determine the suitability of audience response clickers for this kind of assessment. The literature isn’t clear on the problems – there is a lot of emphasis on “fun” and “engagement”.
We also note that we use clickers that allow for numeric as well as multiple choice input, which lets us set a wider range of questions than are possible with many systems. We also have experience in dealing with the equipment (again, the literature suggests this is the largest barrier to effective use of these devices). What we don’t know is whether it is possible or desirable to incorporate use of these clickers as part of the formal assessed work in a module. By integrating assessment more thoroughly within learning we may obtain better learning rather than a focus on preparing for tests. On the other hand, it is less easy to be flexible with the questions you use in class which can be hugely advantageous (for example Chin and Brown (2002) “Student-generated questions: A meaningful aspect of learning in science” International Journal of Science Education 24: 521-549) and more difficult to implement with clicker based learning.

Assessing proofs in pure mathematics
Timothy Hetherington
School of Science and Technology, Nottingham Trent University

Can the marking burden be reduced through innovative assessment, whilst keeping the task educationally rich and maintaining the same level of student engagement and learning from the assessment? What novel methods might be used to assess student comprehension? How can the ideas behind mathematical proof be assessed? Can an imaginative approach be developed to determine a student’s ability to identify assumptions in a mathematical argument? These are the questions that have provided the motivation for this project. So far the applicant has begun the exciting development of an interesting and innovative assessment; a multiple-choice test on mathematical proof. This project seeks to further the implementation of this novel assessment practice. It also aims to obtain detailed feedback from students to enable a comprehensive evaluation of this interesting new method of assessment of pure mathematics. Being part of the MU-MAP project will facilitate the dissemination of new ideas, the development of resources, and provide a mechanism to share good practice.

Evaluating assessment practices in a Business and Industrial Mathematics module
Edmund Chadwick
School of Computing Science and Engineering, Salford University

The Business and Industrial Mathematics module is run in the second year of the mathematics undergraduate degree at the University of Salford. The module is 100% coursework, 20 credits and spans two semesters. The module attempts to prepare and assess students for work related skills important for mathematicians in the workplace. A variety of assessment methods are used to quantify this, and this proposal aims to compare and evaluate the various assessment practices used.

Towards an efficient approach for examining employability skills
Stephen Garrett
Department of Mathematics, University of Leicester

With the recent shift in undergraduate funding, the future success or failure of a university department has been placed in the hands of student recruitment and so to league-table performance. The employability of graduates has therefore never been more important. But how best should math departments assess these skills in their students? A student’s approach to an open-ended problem, one with no necessarily right or wrong answer, is crucial for their employability and is often used on graduate assessment days. Indeed the value of a math graduate is in his/her problem solving skills. The scope for such open-ended problems in applied mathematics is great, yet traditionally these skills are not examined until final-year projects. This severely limits the number of opportunities to develop and assess these skills over an undergraduate programme. This proposed project intends to look at how best to examine a student’s approach to open-ended problems. It will compare the summative attainment of two cohorts of students, both enrolled on modules with common lectures. One group of students will be assessed with a 2hr written examination consisting of 4 compulsory questions, and an extended project over the semester. The other group will be examined by a 3hr written examination, consisting of the same 4 questions and an additional open-ended question, closely related to the extended project. Such an assessment scheme already exists within a related pair of modules at Leicester. I intend to use this as an opportunity to gauge whether open-ended exam questions are a useful addition to the assessment armoury in math departments. If open-ended exam questions can be shown to be as useful as extended projects for assessing particular skills (to be determined), their significant practical advantages mean more use should be made of them across undergraduate programmes.

Summative peer assessment of undergraduate calculus using Adaptive Comparative Judgement
Ian Jones and Lara Alcock
Mathematics Education Centre, Loughborough University

The project aims to demonstrate that sustained mathematical reasoning can be peer assessed with high reliability using Adaptive Comparative Judgement (ACJ). This will be a live trial and the outcome, checked against expert assessment, will be used as part (5%) of the summative assessment of first year undergraduates studying calculus at Loughborough University (first year modules do not contribute to overall degree credit). This innovation has important implications for assessment of mathematical skills that are traditionally seen as difficult to test, such as making judgements about the relative quality of different mathematical explanations. Therefore it needs to be evaluated rigorously and the project will allow us to undertake this evaluation.

Mathematics Lecturers’ Practice and Perception of Computer-Aided Assessment
Carol Robinson and Paul Hernandez-Martinez
Mathematics Education Centre, Loughborough University

Mathematics lecturers at Loughborough University are in the position of being able to utilise Computer Assisted Assessment (CAA) without the need for developing their own questions. Two projects, undertaken a few years ago by colleagues at Loughborough University and elsewhere have resulted in question banks containing thousands of CAA questions ready to use (see, for example, the HELM project – http://helm.lboro.ac.uk .) This project aims to evaluate the issues arising for lecturers who utilise existing resources and adopt this method of assessment. It would appear at first sight that the ready availability of CAA questions is an extremely efficient way of assessing hundreds of first year students and would be welcomed by all involved. Question banks are available for both practice and coursework tests and lecturers are freed from marking students’ work. The workload for lecturers is minimal, as dedicated e-learning staff are available to upload tests and the computer software provides pre-prepared feedback to the students and summary statistics for the lecturers. However all is not necessarily as straightforward as it might appear. For most large classes it is not possible to invigilate the coursework tests due to the lack of availability of computer labs for this purpose. Some lecturers and/or departments are concerned that plagiarism is an issue and in these cases paper-based versions of tests may need to be prepared and marked, thus reducing the efficiency of the system. Other lecturers are concerned about the questions which are available for use. Sometimes they do not fully cover the required syllabus. However the steep learning curve and associated time involved in developing new questions is prohibitive and so lecturers may be tempted to ‘make do’. Other concerns involve the procedural nature of many CAA questions. Clearly lecturers wish their students to be able to apply standard techniques to solving problems. But what of the students’ conceptual understanding of the mathematics? Is CAA able to test this? Does it matter to lecturers if it does not?

PAMPER: Performance Assessment in Mathematics – Preliminary Empirical Research
Adrian Simpson
School of Education, Durham University.

Closed book examinations dominate the assessment diet of undergraduate mathematics in the UK (Ianonne and Simpson, 2011) and while there this is leavened by some variety, oral examinations as a core component at this level disappeared by the 20th Century (Stray 2001). However, there is renewed interest in this form of assessment as more validly grading students’ performance of mathematics (Levesley, 2011). This mini-project aims to investigate the difficulties and advantages to introducing an oral performance component to the assessment of a pure mathematics course. Anecdotal evidence amongst staff at high ranking mathematics departments suggests that the modal assessment method (closed book examination) does not provide them with the clearest insight into students’ mathematical understanding. Those with experience of oral exams from their own mathematics education (such as those from most other European countries) note that these can provide such insight relatively quickly. However, there is concern about the fairness and resource implications of such examinations. It is not clear whether examiners might be biased (consciously or unconsciously) towards certain students; whether student nervousness might overwhelm their performance or how the standard of assessment can be assured. It is also felt that the time taken to assess each student individually and the administration of such a process could be disproportionate to the quality of the information gained.
This project will
a) explore the perceptions of staff and tutors on the course to implementing the assessment
b) detail the process of undertaking performance assessment in a core module
c) outline student attitudes to the assessment process